SECTION TWO

SPECIFICATIONS

2.1 Flutter Measurement Section

Measurement frequency $10\text{Hz} \sim 300\text{kHz}$ range

Measurement center frequency tuning

Automatic tuning

Tuning time: Within 2s after applying input signal. Tuning accuracy: ±1% with respect to input center

frequency.

Automatic retuning is performed if the center frequency varies more than ±5% (with retuning requir-

ing no more than 1s).

Manual tuning

Any desired frequency may be tuned to using key

operations.

Input level range

30mV ∿ 30Vrms

Input impedance

 $100k\Omega$, unbalanced

Measurement range

Drift

0.03% √ 30% (minimum reso-

lution: 0.001%).

Indicated on a 5 digit

display.

Wow/flutter

0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30% fullscale (8

ranges).

Indicated on a 5 digit display (minimum resolu-

tion: 0.0001%).

With compliments

Helmut Singer Elektronik

www.helmut-singer.de info@helmut-singer.de fon +49 241 155 315 fax +49 241 152 066 Feldchen 16-24 D-52070 Aachen Germany

Indication methods

Drift

Peak value indication

Flutter

Peak value indication · · · true peak indication.

Rms indication ... dynamic characteristics corres-

ponding to JIS.

Peak value indication dynamic characteristics conforming to IEC (CCIR,

DIN, ANSI, IEE, EIAJ).

Frequency characteristics

Drift

DC ∿ 0.5Hz

Flutter

Auditory weighting: To meet IEC and JIS standards. Non-auditory weighting: 0.5Hz ∿ Measurement frequency/4.3 -3dB+1dB. 0.5Hz ∿ Measurement frequency/10 -3dB+1dB.

Rolloff:

-6dB/oct Low range:

greater.

High range: -15dB/oct or

greater.

Lowpass filter

-24dB/oct

Automatic setting

Automatic setting to 1/4 or measurement 1/10 οf frequency.

Manual setting

Any desired frequency using key operations. 3 digit setting (within

range 1.00Hz ∿ 99.9kHz).

Frequency setting accuracy

-3dB+2dB attenuation at the

cutoff frequency.

Memory measurement

Measurement method

Peak hold of flutter values.

Measurement time

1 ∿ 99s, settable in steps (3 ∿ 99s for CCIR, DIN and JIS measurements).

Measurement time . setting accuracy

Within +5%

Start method

Local mode: Single

repeat

Remote mode: Single

Reading time

Single mode: Up until start

trigger is applied.

Repeat mode: Up until completion οf next

measurement.

Sampling measurement

Digital display of the meter indication at interval above the minimum of 20ms.

Digital drift display

Indicated every 1s on the

counter display.

Measurement accuracy

 $\pm 5 \times 10^{-5}$

Digital flutter

display

Indicated from the end of one measurement to the next beginning of

measurement,

Measurement accuracy Memory measurement: +2% of

fullscale •

Sampling measurement: ±5%

of fullscale.

Outputs

Drift output

+1VDC+5% with respect to fullscale in each range. Output impedance: 600Ω+20%

Flutter output

filtering lowpass (1% √ 30%): lVrms+10% with respect to fullscale in each

range.

Output impedance: 600Ω+20% Lowpass filtering: 1Vrms+5% of fullscale in each range.

Output impedance: 600Ω+20%

Recorder output

in 1VDC+5% of fullscale

each range.

External filter

External filter output
Output impedance: 600Ω+20%,
0.1Vrms+10% of fullscale

in each range.

External filter input

Input impedance: 100k\Omega+20%, unbalanced, 0.1Vrms+10% of fullscale in each range.

Sync input

Sync input level

TTL, Positive logic

Sync pulse width

5ms or less

Measurement wow/

0.1% or greater

flutter

2.2 Frequency and Rpm Measurement Section

Measurement

Counter-only mode: 1Hz → 1MHz

frequency range

Flutter mode: 10Hz ∿ 300kHz

Input level range

100mV ∿ 30Vrms

Input impedance

 $100k\Omega+20$ %, unbalanced

Reference frequency

accuracy

 3×10^{-6}

Frequency counter

Display

5 digits (1s interval)

Measurement range

1.0000Hz ∿ 999.99kHz

Measurement accuracy

 $\pm 5 \times 10^{-5}$

Frequency counter

Display.

5 digits (ls interval)

Measurement range

1.0000rpm ∿ 99999rpm (The output frequency of the

transducer used to

measure rpm must be within the measurement frequency

range).

No. of rpm transducer pulses $10 \sim 9990$ pulses (in 10

pulse steps)

l Pulse (single)

Measurement accuracy $\pm 5 \times 10^{-5}$

F-V Output

Measurement range

1Hz ∿ 1MHz in 5 ranges

 $1 \sim 100 \text{Hz}$, $100 \text{Hz} \sim 1 \text{kHz}$, $1 \sim 10 \text{kHz}$, $10 \sim 100 \text{kHz}$,

100kHz ∿ 1MHz

Output timing

Output for every period of

the input signal (100Hz, 1kHz, 10kHz, 100Hz,

Output for every 10 periods of the input signal (1MHz).

DC Output voltage

10.0VDC+5% for fullscale of

each range.

Output impedance

600Ω +20%

12-Bit

Digital output

binary code:

positive logic

Print command: Negative

logic

Measurement start signal:

Negative logic

Fanout: 2 TTL loads

2.3 General Specifications

GP-IB Interface

functions

SH1, AH1, T50, L3, LE0, SR1, RL1, PP0, DC1, DT1, C0.

Control

All panel control functions

are provided.

Data output

Drift (%)

Flutter (%)

Frequency (Hz, kHz)

. Rpm

Status register

Display of measurement in

progress, presence of input

signal and errors.

Power supply

100/115/215/230VAC+10%

Outer dimensions

Approx. $430(W) \times 115(H) \times$

420 (D) mm

Weight

Approx. 11kg

With compliments

Helmut Singer Elektronik www.helmut-singer.de info@helmut-singer.de

www.helmut-singer.de info@helmut-singer.de fon +49 241 155 315 fax +49 241 152 066 Feldchen 16-24 D-52070 Aachen Germany